
1

Zero-instrumentation observability
based on eBPF

March 18, 2025
Peter Zaitsev,
Co-Founder at Coroot

https://devopsdays.org/

My Perspective
• Involved in Open Source since late 1990s
• Early Staff member of MySQL AB
• Founder, until recently CEO at Percona
• Co-Founder Altinity, FerretDB, Coroot
• Investor, Advisor, Mentor in Open Source

Businesses
• Open Source Advocate

© 2025 Percona

What is Observability ?

4

What Is
Observability

5

Evolution of
the
Applications

2000s

2020s

Why Observability ?

• Availability
• Performance
• Cost Management
• Security

7

First Three
Usually Come
Together
Availability
Performance
Cost

8

4 Pillars of
Observability

• Metrics
• Logs
• Tracing
• Profiling

9

What is
the Most
Useful?

10

Metrics
• High Level overview
• How many requests/sec

there are happening?
• How many errors?
• Is the Host Down?
• 1000s of metrics may be

collected every second
• Displayed on hundreds of

graphs

11

Logs
• Structured and Unstructured Format
• Have detailed information on what is

happening
• Error logs – contain detailed information

about cause of errors
• Expensive to Produce
• Expensive to Store and Analyze
• Sampling and Filtering is often used

12

Distributed
Tracing
• Tracks Application Requests as they

Pass through the system
• Tricky as we need to pass some

Trace_ID between different services
• Span – Named, Timed Operation which

represents part of Workflow
• Great for Root Cause Analyses
• Often Sampled
• Expensive to produce and store

13

Distributed Tracing Example

14

Profiling
• Where CPU Time or Wall Clock time is

Spent
• Single Service or Distributed
• Language Developer can Understand
• Comparisons are very helpful
• Programming language specific support

needed

15

InstrumentationInstrumentation
How do we get all that Observability? How do we get all that Observability?

16

Types of
Instrumentation
• Static Instrumentation

• Specific Places in the Code can
Produce Metrics, Emit Logs, Traces

• Linux ProcFS
• Dynamic Instrumentation

• Allow Instrumentation “anything”
dynamically

• dTrace, eBPF

17

When and Where should
we Instrument?

• Always-On Instrumentation
• Data is always captured and retained

• Temporary Instrumentation
• Instrumentation enabled when needed

to diagnose the problems
• Canary System Instrumentation

• Small Portion of Systems run additional
(expensive) instrumentation

18

Instrumentation
Challenge

Better observability
comes from more
Instrumentation
If Instrumentation is
Hard it does not get
Done
Swiss Cheese of
Observability

19

Making a
system
observable

• Collecting telemetry data: metrics, logs,
traced, profiles
• Time- and resource-consuming

process since it requires adding
instrumentation into every
application

• Hard to achieve 100% coverage
without blind spots (3rd party and
legacy services)

• Storing telemetry data in some
databases

• Learning how to troubleshoot your
system using all that data
• The most challenging part

20

Collecting telemetry data

21

Before answer HOW to gather, let’s discuss WHAT to gather or what we want to
know about our apps.

• SLI (Service Level Indicators): requests, errors, latency
• Communication with other services or databases: requests, errors, latency
• Resource-related metrics: CPU, Memory, Disk
• Network-related metrics: latency, connectivity, packet loss
• Node-level metrics and logs
• Runtime-related metrics: GC, Thread Pools, Connection pools, Locks
• Orchestrator-related metrics
• Logs to identify application-specific issues
• Profiles to explain spikes in CPU or Memory usage

Collecting telemetry data

22

• It’s possible to collect all these data without using eBPF, but eBPF allows to
achieve that in MINUTES

• There are always legacy and 3rd party services that you can’t instrument.
eBPF doesn’t require code changes and redeployments.

• Usually, developers instrument only most critical services, so you can’t be
sure that you have no blind spots.

• Instrumentation is a continuous process, so you need to ensure that every
new service integrates OpenTelemetry SDKs.

A quick intro into eBPF

23

• A feature of the Linux kernel
• Allows to run small programs in the kernel-space and call them on any

kernel or app function call
• Such programs have access to function arguments and returning values
• Then, they can send some data to a program in the user-space

eBPF is just a way how we can obtain data, we just need to implement
kernel-space and user-space programs

eBPF Illustrated

https://ebpf.io

24

https://ebpf.io/

How to use eBPF

25

• Kprobe allows to capture any kernel function call
• Kernel functions can be renamed, deleted, their arguments can change
• Some functions, in fact, almost never change

• Tracepoints – statically instrumented places in the kernel which are
relatively stable comparing to Kprobe

• Uprobe allows to capture user-space programs calls
• MAPS allow to store some state in the kernel space
• PERF_MAPS allows to share data between the kernel-space and user-

space

It’s good to know, but you don’t have to write your own eBPF programs. There
are a lot of ready-made tools, such as Coroot

eBPF
Awesome

Command
Line Tools

26

https://www.brendangregg.com/blog/2019-07-15/bpf-performance-tools-book.html

Example: CPU Runqueue Latency

27https://coroot.com/blog/engineering/runqlat-and-runqslower-ebpf-command-line-tools/

https://coroot.com/blog/engineering/runqlat-and-runqslower-ebpf-command-line-tools/

eBPF Applications

28

https://ebpf.io/applications/

https://ebpf.io/applications/

Coroot-node-agent (Apache 2.0 license)

29

• An open-source Prometheus/OpenTelemetry compatible agent that
gathers metrics, logs, traces and profiles

• Discovers containers/processes running on the node
• Discovers their logs (k8s, docker, containerd, journald) and sends them

over OTLP
• Extracts repeated patterns from logs and generates log-based metrics
• Monitors TCP connections of every container
• Measures network latency between each container and its peers
• Tracks communications between services (requests, errors, latency),

supports HTTP, GRPC, Postgres, MySQL, MongoDB, Redis, Memcached,
Cassandra, Kafka, Rabbitmq, NATS

How the agent leverages eBPF

30

tracepoint/task/task_newtask: tracking new process creation. It reports only
a PID, then the agent discovers container metadata using /proc

tracepoint/oom/mark_victim: marking a process as a victim of the OOM
killer

tracepoint/sched/sched_process_exit: tracking process terminatio. If a
process was terminated by the OOM killer, the event is enriched with the
reason of the termination

tracepoint/syscalls/sys_enter_open(at): tracking file openings to identify
the logs and partitions used by a specific container

How the agent leverages eBPF

31

tracepoint/syscalls/sys_enter_connect: tracking FD of a TCP connection

tracepoint/sock/inet_sock_set_state: tracking peers and states of TCP
connections

tracepoint/tcp/tcp_retransmit_skb: tracking TCP retransmissions

How the agent leverages eBPF

32

tracepoint/syscalls/sys_enter_write/writev/sendmsg/sendto: track writes
to an FD (socket)

tracepoint/syscalls/sys_enter_read/readv/recvmsg/recvfrom: track reads
from an FD (socket)

2-phase L7-protocol parsing:
• Kernel space: high-performance protocol detection
• User—space: protocol parsing for generating metrics and traces

SSL

33

Capturing the data before encryption and after decryption.

• For apps using OpenSSL:
• uprobe/SSL_read
• uprobe/SSL_write

• For GO apps:
• uprobe/go_crypto_tls_write
• uprobe/go_crypto_tls_read

eBPF: performance impact

34

The Linux kernel ensures minimal interruption to kernel code execution by
validating each eBPF program before execution:
• Program must have a finite complexity.
• The verifier evaluates all possible execution paths within configured upper

complexity limits

Communication between kernel-space and user-space programs occurs
through a ring buffer:
• If the user-space program delays data reading, it may miss data due to

overwriting

For observability, it’s a great deal: although we might lose some telemetry
data, we can be sure that there is no impact on performance

eBPF-based metrics

35

eBPF-based metrics

36

• L7: requests per second, Errors, Latency
• Network Round-trip-time (RTT)
• TCP: connections, failed connection attempts, retransmissions (can signify

packet loss)

eBPF Based
DNS Profiling

37

eBPF Based Network Cost
Monitoring

38

eBPF-based traces (spans)

39

• Traces are extremely useful for identifying the particular requests within an
anomaly

• They also provide a more granular distribution of requests by latency and
status

eBPF-
based
tracing
limitations

• The OpenTelemetry SDKs generate a TRACE_ID for each
request and propagate it to other services

• When using eBPF, TRACE_IDs are not available, limiting
us to capturing individual spans (requests) rather than
complete traces

• There's a tool that claims to generate TRACE_IDs by
intercepting and modifying requests, but I think it's not
a good idea

• Coroot supports both traditional OpenTelemetry
integration and eBPF-based tracing methods

40

eBPF-based
continuous CPU
profiling

• Allows to explain any anomaly in CPU
usage precise to the particular line of
code

• Doesn’t require any code changes

• Gathers per-process call stacks and
aggregates them by containers

• Resolution by default is 60 seconds, so
you can compare profiles within and
anomaly with previous periods

41

eBPF-based CPU profiling

42

eBPF-based CPU profiling (comparison mode)

43

How Coroot works

44

• coroot-node-agent: gathers metrics, logs, traces, and profiles. Installed on
every node in the cluster (k8s, docker, VM, bare-metal)

• Prometheus for storing metrics
• ClickHouse for storing logs, traces, and profiles
• Coroot: UI, alerts, predefined inspections
• You can use Coroot as an OpenTelemetry backend for logs and traces

Conclusion
• eBPF is awesome!

• It enables gathering almost any telemetry data
you need without requiring code changes.

• The performance impact on your apps is
negligible.

• Want to gain system visibility in minutes? Install
Coroot (Open Source, Apache 2.0).

• https://github.com/coroot/coroot

45

https://www.linkedin.com/in/peterzaitsev
https://twitter.com/PeterZaitsev

http://www.peterzaitsev.com

Thank you, Let’s connect!

46

https://osoday.com

https://devopsdays.org/

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/
https://osoday.com/

	Slide 1: Zero-instrumentation observability based on eBPF
	Slide 2
	Slide 3: My Perspective
	Slide 4: What is Observability ?
	Slide 5: What Is Observability
	Slide 6: Evolution of the Applications
	Slide 7: Why Observability ?
	Slide 8: First Three Usually Come Together
	Slide 9: 4 Pillars of Observability
	Slide 10: What is the Most Useful?
	Slide 11: Metrics
	Slide 12: Logs
	Slide 13: Distributed Tracing
	Slide 14: Distributed Tracing Example
	Slide 15: Profiling
	Slide 16: Instrumentation
	Slide 17: Types of Instrumentation
	Slide 18: When and Where should we Instrument?
	Slide 19: Instrumentation Challenge
	Slide 20: Making a system observable
	Slide 21: Collecting telemetry data
	Slide 22: Collecting telemetry data
	Slide 23: A quick intro into eBPF
	Slide 24: eBPF Illustrated
	Slide 25: How to use eBPF
	Slide 26: eBPF Awesome Command Line Tools
	Slide 27: Example: CPU Runqueue Latency
	Slide 28: eBPF Applications
	Slide 29: Coroot-node-agent (Apache 2.0 license)
	Slide 30: How the agent leverages eBPF
	Slide 31: How the agent leverages eBPF
	Slide 32: How the agent leverages eBPF
	Slide 33: SSL
	Slide 34: eBPF: performance impact
	Slide 35: eBPF-based metrics
	Slide 36: eBPF-based metrics
	Slide 37: eBPF Based DNS Profiling
	Slide 38: eBPF Based Network Cost Monitoring
	Slide 39: eBPF-based traces (spans)
	Slide 40: eBPF-based tracing limitations
	Slide 41: eBPF-based continuous CPU profiling
	Slide 42: eBPF-based CPU profiling
	Slide 43: eBPF-based CPU profiling (comparison mode)
	Slide 44: How Coroot works
	Slide 45: Conclusion
	Slide 46: Thank you, Let’s connect!

