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My Perspective
• Involved in Open Source since late 1990s
• Early Staff member of MySQL AB
• Founder, until recently CEO at Percona
• Co-Founder Altinity, FerretDB, Coroot 
• Investor, Advisor, Mentor in Open Source 

Businesses
• Open Source Advocate
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What is Observability ?
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What Is 
Observability

5



Evolution of 
the 
Applications 

2000s

2020s



Why Observability ?

• Availability
• Performance
• Cost Management
• Security 

7



First Three 
Usually Come 
Together 
Availability
Performance 
Cost 
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4 Pillars of 
Observability 

• Metrics
• Logs 
• Tracing 
• Profiling
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What is 
the Most 
Useful?
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Metrics 
• High Level overview 
• How many requests/sec 

there are happening?
• How many errors? 
• Is the Host Down? 
• 1000s of metrics may be 

collected every second
• Displayed on hundreds of 

graphs
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Logs
• Structured and Unstructured Format
• Have detailed information on what is 

happening
• Error logs – contain detailed information 

about cause of errors
• Expensive to Produce
• Expensive to Store and Analyze 
• Sampling and Filtering is often used 
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Distributed 
Tracing 
• Tracks Application Requests as they 

Pass through the system
• Tricky as we need to pass some 

Trace_ID between different services
• Span – Named, Timed Operation which 

represents part of Workflow 
• Great for Root Cause Analyses
• Often Sampled
• Expensive to produce and store
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Distributed Tracing Example
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Profiling 
• Where CPU Time or Wall Clock time is 

Spent
• Single Service or Distributed 
• Language Developer can Understand
• Comparisons are very helpful
• Programming language specific support 

needed
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InstrumentationInstrumentation
How do we get all that Observability? How do we get all that Observability? 
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Types of 
Instrumentation
• Static Instrumentation

• Specific Places in the Code can 
Produce Metrics, Emit Logs, Traces

• Linux ProcFS
• Dynamic Instrumentation

• Allow Instrumentation “anything” 
dynamically

• dTrace,  eBPF
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When and Where should 
we Instrument?

• Always-On Instrumentation
• Data is always captured and retained

• Temporary Instrumentation
• Instrumentation enabled when needed 

to diagnose the problems
• Canary System Instrumentation

• Small Portion of Systems run additional 
(expensive) instrumentation

18



Instrumentation 
Challenge

Better observability 
comes from more 
Instrumentation
If Instrumentation is 
Hard it does not get 
Done
Swiss Cheese of 
Observability 
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Making a 
system 
observable

• Collecting telemetry data: metrics, logs, 
traced, profiles
• Time- and resource-consuming 

process since it requires adding 
instrumentation into every 
application

• Hard to achieve 100% coverage 
without blind spots (3rd party and 
legacy services)

• Storing telemetry data in some 
databases

• Learning how to troubleshoot your 
system using all that data
• The most challenging part
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Collecting telemetry data
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Before answer HOW to gather, let’s discuss WHAT to gather or what we want to 
know about our apps.

• SLI (Service Level Indicators): requests, errors, latency
• Communication with other services or databases: requests, errors, latency
• Resource-related metrics: CPU, Memory, Disk
• Network-related metrics: latency, connectivity, packet loss
• Node-level metrics and logs
• Runtime-related metrics: GC, Thread Pools, Connection pools, Locks
• Orchestrator-related metrics
• Logs to identify application-specific issues
• Profiles to explain spikes in CPU or Memory usage



Collecting telemetry data

22

• It’s possible to collect all these data without using eBPF, but eBPF allows to 
achieve that in MINUTES

• There are always legacy and 3rd party services that you can’t instrument. 
eBPF doesn’t require code changes and redeployments.

• Usually, developers instrument only most critical services, so you can’t be 
sure that you have no blind spots. 

• Instrumentation is a continuous process, so you need to ensure that every 
new service integrates OpenTelemetry SDKs. 



A quick intro into eBPF
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• A feature of the Linux kernel
• Allows to run small programs in the kernel-space and call them on any 

kernel or app function call
• Such programs have access to function arguments and returning values
• Then, they can send some data to a program in the user-space

eBPF is just a way how we can obtain data, we just need to implement 
kernel-space and user-space programs



eBPF Illustrated

https://ebpf.io
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https://ebpf.io/


How to use eBPF

25

• Kprobe allows to capture any kernel function call
• Kernel functions can be renamed, deleted, their arguments can change
• Some functions, in fact, almost never change

• Tracepoints – statically instrumented places in the kernel which are 
relatively stable comparing to Kprobe

• Uprobe allows to capture user-space programs calls
• MAPS allow to store some state in the kernel space
• PERF_MAPS allows to share data between the kernel-space and user-

space

It’s good to know, but you don’t have to write your own eBPF programs. There 
are a lot of ready-made tools, such as Coroot



eBPF 
Awesome 

Command 
Line Tools
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https://www.brendangregg.com/blog/2019-07-15/bpf-performance-tools-book.html



Example: CPU Runqueue Latency

27https://coroot.com/blog/engineering/runqlat-and-runqslower-ebpf-command-line-tools/

https://coroot.com/blog/engineering/runqlat-and-runqslower-ebpf-command-line-tools/


eBPF Applications 
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https://ebpf.io/applications/

https://ebpf.io/applications/


Coroot-node-agent (Apache 2.0 license)
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• An open-source Prometheus/OpenTelemetry compatible agent that 
gathers metrics, logs, traces and profiles

• Discovers containers/processes running on the node
• Discovers their logs (k8s, docker, containerd, journald) and sends them 

over OTLP
• Extracts repeated patterns from logs and generates log-based metrics
• Monitors TCP connections of every container
• Measures network latency between each container and its peers
• Tracks communications between services (requests, errors, latency), 

supports HTTP, GRPC, Postgres, MySQL, MongoDB, Redis, Memcached, 
Cassandra, Kafka, Rabbitmq, NATS



How the agent leverages eBPF
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tracepoint/task/task_newtask: tracking new process creation. It reports only 
a PID, then the agent discovers container metadata using /proc

tracepoint/oom/mark_victim: marking a process as a victim of the OOM 
killer

tracepoint/sched/sched_process_exit: tracking process terminatio. If a 
process was terminated by the OOM killer, the event is enriched with the 
reason of the termination

tracepoint/syscalls/sys_enter_open(at): tracking file openings to identify 
the logs and partitions used by a specific container



How the agent leverages eBPF

31

tracepoint/syscalls/sys_enter_connect: tracking FD of a TCP connection

tracepoint/sock/inet_sock_set_state: tracking peers and states of TCP 
connections

tracepoint/tcp/tcp_retransmit_skb: tracking TCP retransmissions



How the agent leverages eBPF

32

tracepoint/syscalls/sys_enter_write/writev/sendmsg/sendto: track writes 
to an FD (socket)

tracepoint/syscalls/sys_enter_read/readv/recvmsg/recvfrom: track reads 
from an FD (socket) 

2-phase L7-protocol parsing:
• Kernel space: high-performance protocol detection
• User—space: protocol parsing for generating metrics and traces



SSL
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Capturing the data before encryption and after decryption.

• For apps using OpenSSL: 
• uprobe/SSL_read 
• uprobe/SSL_write

• For GO apps: 
• uprobe/go_crypto_tls_write
• uprobe/go_crypto_tls_read



eBPF: performance impact
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The Linux kernel ensures minimal interruption to kernel code execution by 
validating each eBPF program before execution:
• Program must have a finite complexity. 
• The verifier evaluates all possible execution paths within configured upper 

complexity limits

Communication between kernel-space and user-space programs occurs 
through a ring buffer:
• If the user-space program delays data reading, it may miss data due to 

overwriting

For observability, it’s a great deal: although we might lose some telemetry 
data, we can be sure that there is no impact on performance



eBPF-based metrics
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eBPF-based metrics
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• L7: requests per second, Errors, Latency
• Network Round-trip-time (RTT)
• TCP: connections, failed connection attempts, retransmissions (can signify 

packet loss)



eBPF Based 
DNS Profiling
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eBPF Based Network Cost 
Monitoring
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eBPF-based traces (spans)
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• Traces are extremely useful for identifying the particular requests within an 
anomaly

• They also provide a more granular distribution of requests by latency and 
status



eBPF-
based 
tracing 
limitations

• The OpenTelemetry SDKs generate a TRACE_ID for each 
request and propagate it to other services

• When using eBPF, TRACE_IDs are not available, limiting 
us to capturing individual spans (requests) rather than 
complete traces

• There's a tool that claims to generate TRACE_IDs by 
intercepting and modifying requests, but I think it's not 
a good idea

• Coroot supports both traditional OpenTelemetry 
integration and eBPF-based tracing methods

40



eBPF-based 
continuous CPU 
profiling

• Allows to explain any anomaly in CPU 
usage precise to the particular line of 
code

• Doesn’t require any code changes

• Gathers per-process call stacks and 
aggregates them by containers

• Resolution by default is 60 seconds, so 
you can compare profiles within and 
anomaly with previous periods
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eBPF-based CPU profiling
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eBPF-based CPU profiling (comparison mode)
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How Coroot works
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• coroot-node-agent: gathers metrics, logs, traces, and profiles. Installed on 
every node in the cluster (k8s, docker, VM, bare-metal)

• Prometheus for storing metrics
• ClickHouse for storing logs, traces, and profiles
• Coroot: UI, alerts, predefined inspections
• You can use Coroot as an OpenTelemetry backend for logs and traces



Conclusion
• eBPF is awesome! 

• It enables gathering almost any telemetry data 
you need without requiring code changes. 

• The performance impact on your apps is 
negligible. 

• Want to gain system visibility in minutes? Install 
Coroot (Open Source, Apache 2.0).

 

• https://github.com/coroot/coroot
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https://www.linkedin.com/in/peterzaitsev 
https://twitter.com/PeterZaitsev 

http://www.peterzaitsev.com

Thank you, Let’s connect!
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https://osoday.com

https://devopsdays.org/
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