coroot ~#

Zero-instrumentation observability
based on eBPF

Kk
| ' ™)\ March 18,2025 ¢

ﬂlg Peter Zaitsev,

§ Co-Founder at Coroot 0 pS Dug S
Chicago

U SrTTa" | ' 9
- A P
» B

—

man LS s

S p—

https://devopsdays.org/

T DevOpsDays

Ed

Chicago 2025

—

N

My Perspective

« Involved in Open Source since late 1990s
- Early Staff member of MySQL AB

- Founder, until recently CEO at Percona

« Co-Founder Altinity, FerretDB, Coroot

 Investor, Advisor, Mentor in Open Source
Businesses

« Open Source Advocate

© 2025 Percona & PERCONA

What is Observability ?

9 You

®

what is observability

ChatGPT

Observability is a concept in systems theory and engineering that refers to the ability to understand the
internal state of a system based on its external outputs. In simpler terms, it's about how well you can
observe and understand what's happening inside a system just by looking at its behavior from the

outside.

In software engineering and computer science, observability is particularly important in the context of
complex distributed systems, where traditional debugging techniques might not be sufficient. It
involves collecting and analyzing data from various sources such as logs, metrics, traces, and events to

gain insights into the performance, health, and behavior of the system.

What Is
Observability

Evolution of
the
Applications

Why Observability ?

« Availability

« Performance

« Cost Management
« Security

First Three
Usually Come
Together

Availability
Performmance
Cost

4 Pillars of
Observability ;

« Metrics
 Logs S
« Tracing 1
» Profiling

aﬁ Peter Zaitsev « You
: g Entrepreneur | Driving Success with MySQL, MariaDB, MongoDB & Post...

\
1d+ &

®
W h q t I s What is most important pillar of Observability ? #observability

What is most important pillar of #observability

t h e M O St You can see how people vote. Learn more

f Ig Metrics @ 51%
U se u o Traces &@ 13%
Logs @ 26%
Profiling @ 10%

220 votes « Poll closed

10

Metrics

 High Level overview

+ How many requests/sec
there are happening?

 HOw many errors?
* |s the Host Down?

 1000s of metrics may be
collected every second

- Displayed on hundreds of
graphs

Logs

e Structured and Unstructured Format

 Have detailed information on what is
happening

* Error logs — contain detailed information
about cause of errors

- Expensive to Produce
- Expensive to Store and Analyze
- Sampling and Filtering is often used

12

\| —

an

.
'

| J14
o

VA

"
>
!

y.a

<

XA
L

Cy

Distributed
Tracing

 Tracks Application Requests as they
Pass through the system

« Tricky as we need to pass some
Trace_ID between different services

« Span — Named, Timed Operation which
represents part of Workflow

 Great for Root Cause Analyses
- Often Sampled
 Expensive to produce and store

13

Distributed Tracing Example

& Trace f54cbf74bf2¢c24c04ddf800f2b1b8bb3

Slarled al: 2024-04-01 15:20:58.491 Duratlion: 26.53ms Slatus: @HTTP-500
Service & Operation 0 5.31ms 10.61ms 15.92ms 21.22ms 26.53ms
v I frontend HT7P POST O 1 2 .03
v | frontend grpc.oteldemo.CheckoutService/PlaceOrder O I 2 S6ms
v | checkoutservice oteldemo CheckoutService/PlaceOrder [] I (5.85ms
~ | checkoutservice prepareQrderltemsAndShippingQuoteFromCart I 1 5.53ms
+ | checkoutservice oteldemo. CartService/GetCart I 5 4 7ms
v [cartservice POST /oteldemo.CartService/GetCart B 1.34ms
- | cartservice HCET Bl 1[21ms
v | checkoutservice oteldemo.ProductCatalogService/GetProduct [] I & 253ms

v I productcatalogservice oteldemo.ProductCatalogService/GetProduct @ I 3.91ms
M productcatalogservice oteldemo.FeatureFlagService/GetFlag I : 62ms
v featureﬂagservice /oteldemo.FeatureFlagService/GetFlag 1.05ms
featureflagservice featureflagservice.repo.query:featureflag 0.87ms

14

®

- m_@

Profiling

« Where CPU Time or Wall Clock time is
Spent

Single Service or Distributed
Language Developer can Understand
Compadarisons are very helpful

Programming language specific support
needed

15

do we get all that Observability?
-la "

Types of
Instrumentation

e Static Instrumentation

 Specific Places in the Code can
Produce Metrics, Emit Logs, Traces

e Linux ProcFS

« Dynamic Instrumentation

« Allow Instrumentation “anything”
dynamically

« dTrace, eBPF

When and Where should
we Instrument?

« Always-On Instrumentation
- Data is always captured and retained

« Temporary Instrumentation
* Instrumentation enabled when needed
to diagnose the problems
- Canary System Instrumentation

« Small Portion of Systems run additional
(expensive) instrumentation

coroot i ~#

Better observability
comes from more
Instrumentation

If Instrumentation is
Hard it does not get
Done

Swiss Cheese of
Observability

Instrumentation
Challenge

 Collecting telemetry data: metrics, logs,
traced, profiles

« Time- and resource-consuming
process since it requires adding
instrumentation into every
application

- Hard to achieve 100% coverage
without blind spots (3@ party and
legacy services)

Making a
system

observable . Storing telemetry data in some

databases

 Learning how to troubleshoot your
system using all that data

« The most challenging part

20

Collecting telemetry data

Before answer HOW to gather, let’s discuss WHAT to gather or what we want to
know about our apps.

- SLI (Service Level Indicators): requests, errors, latency

« Communication with other services or databases: requests, errors, latency
« Resource-related metrics: CPU, Memory, Disk

« Network-related metrics: latency, connectivity, packet loss

« Node-level metrics and logs

* Runtime-related metrics: GC, Thread Pools, Connection pools, Locks

« Orchestrator-related metrics

» Logs to identify application-specific issues

 Profiles to explain spikes in CPU or Memory usage

coroot :~# I

Collecting telemetry data

« It's possible to collect all these data without using eBPF, but eBPF allows to
achieve that in MINUTES

- There are always legacy and 3@ party services that you can’t instrument.
eBPF doesn’t require code changes and redeployments.

« Usually, developers instrument only most critical services, so you can't be
sure that you have no blind spots.

« Instrumentation is a continuous process, so you need to ensure that every
new service integrates OpenTelemetry SDKSs.

coroot i~# e

A quick intro into eBPF

« A feature of the Linux kernel

« Allows to run small programs in the kernel-space and call them on any
kernel or app function call

« Such programs have access to function arguments and returning values
« Then, they can send some data to a program in the user-space

eBPF is just a way how we can obtain data, we just need to implement
kernel-space and user-space programs

coroot :~# Jpk

USE CASES USER SPACE KERNEL

&% Networking 2 Projects X Dev Tools a Kernel Runtime
Verifier & JIT Helper API
&30
fa) b e
n Security OS Runtime Maps
........................)
Q Observability [TR @’ Application Tracing Profiling Monitoring a’ Kernel Stack

eBPF lllustrated

https://ebpf.io

24

https://ebpf.io/

How to use eBPF

Kprobe allows to capture any kernel function call
« Kernel functions can be renamed, deleted, their arguments can change
« Some functions, in fact, almost never change

« Tracepoints — statically instrumented places in the kernel which are
relatively stable comparing to Kprobe

« Uprobe allows to capture user-space programs calls
- MAPS allow to store some state in the kernel space

 PERF_MAPS allows to share data between the kernel-space and user-
space

It's good to know, but you don’t have to write your own eBPF programs. There
are a lot of ready-made tools, such as Coroot

coroot ~# s

filetop opensnoop

filelife fileslower statsnoop
viscount vfsstat syncsnoop mysqgld_gslower .
ioprofile dbstat dbslower | -

filetype fsrwstat

>

vfssize mmapfiles
writesync
cachestat cachetop
destat desnoop
/ mountsnoop

iecstat

c* java* node* php* javathreads gethostlatency

python* ruby* memleak

. sslsniff

nistacks
scread bashreadline threadsnoop
ucalls uflow mysqld_clat pmlock pmheld
uobjnew ustat bashfunc syscount
uthreads ugc bashfunclat killsnoop
| { shellsnoop

signals naptime

l Applications
Runtimes

eperm setuids

elfsnoop modsnoop

System Libraries

execsnoop exitsnoop

bufgrow
readahead
writeback
trace

\ System Call Interface

\ vy

N R

* 4 Sockets

{]
funclatency
stackcount
profile

/
- File Systems // TCP/UDP

Scheduler

44

A

pidpersec
cpudist cpuwalk
runglat runglen

rungslower
.——.—f—""‘ cpuunclaimed
deadlock

offcputime wakeuptime
I offwaketime softirgs

btrfsdist
btrfsslower

argdist
funccount
funcslower

Volume Manage// IP
o

Virtual -~

ext4dist extdslower Vol

Memory

ic:e// Net Device

[~~~ offcpuhist threaded
pidnss mlock mheld
smpcalls workg

‘h=h=~=h\5‘ slabratetop

oomkill memleak

shmsnoop drsnoop

| *\ NN

nfsslower nfsdist /‘ Block Dev
xfsslower xfsdist

v zfsslower zfsdist // f
overlayfs f

mdflush scsilatency
biotop biosnocop scsiresult
biolatency
bitesize sofdsnoop
seeksize

sockstat sofamily

T
[ieee802llscan | nettxlat

nvmelatency netsize ipecn faults ffaults

tcptop teplife tcptracer gdisc-fq vmscan swapin

tcpconnect tcpaccept
tcpconnlat tcpretrans

i tcpsubnet tcpdro
blypattern soprotocol sormem P t tat B P
biostacks soconnect soaccept cpatates :
biocerr R P tcpsynbl tcpwin Other:
Legend: h h socketio socksize P8y P capable
: iosched . .onnlat solstbyte tcpnagle tcpreset P
prior tool blkthrot skbdrop skblife udpconnect xenhyper
new tool P kvmexits

\ kmem kpages numamove
\\ mmapsnoop brkstack
superping fmapfault hfaults
N\
hardirgs
criticalstat
ttysnoop

llcstat CPUs
cpufreq ™

https:/ /[www.brendangregg.com/blog/2019-07-15/bpf-performance-tools-book.html

26

Example: CPU Runqueue Latency

root@localhost: /usr/share/bcc/tools# ./runqlat 10 1
Tracing run queue latency... Hit Ctrl-C to end.

usecs » count distribution
%] 13

2 » 285 K
4 : 2564 sk 3k 3 ok sk 3k ok 3k 3 ok sk 3k ok 3k ok %k 3k ok ok ok ok

8 + 4827 ok 3 ok 3k ok ok ok 3k ke ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk ok sk ok sk ok ok ok ok kK
4817 sk 3k ok 3k ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
2141 % 3k ok 3k ok 3k ok 3k ok ok ok ok sk ok sk ok %
1086 sk % ok sk ok % %k k

709 % ok ok ok %
88 e e o
426 ok
192 *

95
41
3

https://coroot.com/blog/engineering/runqlat-and-runqslower-ebpf-command-line-tools/

eBPF Applications

bcec
Toolkit and library for efficient BPF-based kernel tracing

BCC is a toolkit for creating efficient kernel tracing and manipulation programs built upon
eBPF, and includes several useful command-line tools and examples. BCC eases writing of
eBPF programs for kernel instrumentation in C, includes a wrapper around LLVM, and
front-ends in Python and Lua. It also provides a high-level library for direct integration into
applications.

GITHUB

Cilium
eBPF-based Networking, Security, and Observability

Cilium is an open source project that provides eBPF-powered networking, security and
observability. It has been specifically designed from the ground up to bring the
advantages of eBPF to the world of Kubernetes and to address the new scalahility,
security and visibility requirements of container workloads.

GITHUEB WEBSITE

bpftrace
High-level tracing language for Linux eBPF

bpftrace is a high-level tracing language for Linux eBPF. Its language is inspired by awk and

%

C, and predecessor tracers such as DTrace and SystemTap. bpftrace uses LLVM as a
backend to compile scripts to eBPF bytecode and makes use of BCC as a library for

https://ebpf.io/applications/

https://ebpf.io/applications/

Coroot-node-agent (Apache 2.0 license)

« An open-source Prometheus/OpenTelemetry compatible agent that
gathers metrics, logs, traces and profiles

- Discovers containers/processes running on the node

- Discovers their logs (k8s, docker, containerd, journald) and sends them
over OTLP

- Extracts repeated patterns from logs and generates log-based metrics
« Monitors TCP connections of every container
- Measures network latency between each container and its peers

. Tracks communications between services (requests, errors, latency),
supports HTTP, GRPC, Postgres, MySQL, MongoDB, Redis, Memcached,
Cassandra, Kafka, Rabbitmqg, NATS

coroot ~# BE

How the agent leverages eBPF

tracepoint/task/task_newtask: tracking new process creation. It reports only
a PID, then the agent discovers container metadata using [proc

tracepoint/oom/mark_victim: marking a process as a victim of the OOM
killer

tracepoint/sched/sched_process_exit: tracking process terminatio. If a
process was terminated by the OOM killer, the event is enriched with the
reason of the termination

tracepoint/syscalls/sys_enter_open(at): tracking file openings to identify
the logs and partitions used by a specific container

coroot :~# Bl

How the agent leverages eBPF

tracepoint/syscalls/sys_enter_connect: tracking FD of a TCP connection

tracepoint/sock/inet_sock_set_state: tracking peers and states of TCP
connections

tracepoint/tcp/tcp_retransmit_skb: tracking TCP retransmissions

coroot :~# Bl

How the agent leverages eBPF

tracepoint/syscalls/sys_enter_write/writev/sendmsg/sendto: track writes
to an FD (socket)

tracepoint/syscalls/sys_enter_read/readv/recvmsg/recvfrom: track reads
from an FD (socket)

2-phase L7-protocol parsing:
« Kernel space: high-performance protocol detection
« User—space: protocol parsing for generating metrics and traces

coroot i~# Y

SSL

Capturing the data before encryption and after decryption.

« For apps using OpenSSL:
« uprobe/SSL_read
« uprobe/SSL_write

 For GO apps:
. uprobe/go_crypto_tls_write
. uprobe/go_crypto_tls_read

coroot :~# Bk

eBPF: performance impact

The Linux kernel ensures minimal interruption to kernel code execution by
validating each eBPF program before execution:

« Program must have a finite complexity.

« The verifier evaluates all possible execution paths within configured upper
complexity limits

Communication between kernel-space and user-space programs occurs
through a ring buffer:

 If the user-space program delays data reading, it may miss data due to
overwriting

For observability, it's a great deal: although we might lose some telemetry
data, we can be sure that there is no impact on performance

coroot ~# Bl

eBPF-based metrics

Q, search namespaces ¥

@ delivery

ns:default

— 2rps C) 2ms
1334B/s |157B/s

10rps) 2MS
13KB/s | 560B/s

@ front-end :
ns:default

10rps) 13ms
11kB/s |68kB/s

0.3 rps §) 37ms
169B/s |23B/s

@ load-test :
ns:default

ekafka |
ns:default / &kafka

application [] control-plane [] monitoring [] other

@ cache H
& memcached / ns:default
@cart i },,__ o
default T
i @ cart-db

&redis / ns:default

=--- 7..‘

alog
ns:default

0.7 rps () 0.9ms

134B/5 1228/s) # @ db-main

= postgres / ns:default

.| ®kafka-zookeeper :
& zookeeper / ns:default

_ ®@order-db-mongodb :
&mongodb / ns:default

Ho04ms O 27ms_,‘fE
0.41ps () 102ms
HERSENE0EE 176875 |40B/5

@ rabbitmg-server
ns:default / rabbitmq

@ recommendations i
ns:default

® order
ns:default

~. ®user-db-mysqg|
emysql / ns:default

coroot ~#

35

eBPF-based metrics

® db-main :
Epostgres / ns:default
@ catalog :
--------------- db-main-0 3
ns:default [A0rps EREEE Rt A ‘
] rolexreplica / version:14.6
0.07rps) 17ms ..~
119B/s |314B/s K [0.1 rps () 3ms
@ coroot-prometheus-server : db-main-1 > . 228/sp12(3§)68/s
ns:coroot JEXs role:primary / version:14.6 ® kube apiserver
[A0ps . ‘kube-syst
@ kubelet Lt) = db-main-2 3 | | o
instances:5 ' ,-" . rolereplica / version:14.6
db-main-pooler-85c86686d4... <
@ postgres-operator o* ,
rszalando proxy:pgbouncer

1300 db-main-pooler-85c86686d4... <

proxy:pgbouncer

« L/:requests per second, Errors, Latency
. Network Round-trip-time (RTT)

- TCP: connections, failed connection attempts, retransmissions (can signify
packet loss)

coroot :~# EEl

® DNS latency: ok

Condition: the 95th percentile of DNS response times > 100ms
e q s e ©® DNS server errors: ok

Condition: the number of server DNS errors (excluding NXDOMAIN) > 0

ogeo
D N S P rOf I I I n © DNS NXDOMAIN errors: ok
Condition: the number of the NXDOMAIN DNS errors (for previously valid requests) > 0

Domain Requests No results (IPv4: A) No results (IPv6: AAAA) No results (other) ServFail
® demo-currencyservice.default.svc.cluster.local 202 k - - - -
® demo-shippingservice.default.sve.cluster.local 145k = = = =
© demo-cartservice.default.sve.cluster.local 14.2 & - - - -
® demo-paymentservice.default.svc.cluster.local 7.3k - - - -
@ demo-productcatalogservice.default.sve.cluster.local FARS - - - -
® demo-emailservice.default.sve.cluster.local 78 - - - -
DNS requests by type, per second DNS errors, per second
100
80 80
60 60
40 40
20 20
a a
Jun 03 14:30 14:35 Jun 03 14:30 14:35
I TypeA [TypeAAAA N TypeAnnxdomain [TypeAAAA:nxdomain

DNS latency, seconds

8m
AR VANV VA SNCAVYAY

4m

2m
Om
Jun03 14:30 14:35

B pso B pss B p99

eBPF Based Network Cost

Monitoring

& Applications () B UNAUIICHIEN <)

Application
coroot-prometheus-server
coroot-node-agent
coroot
coroot-clickhouse-shard0
coroot-cluster-agent
coroot-connect
coroot-kube-state-metrics
coroot-connect-dev2

coroot-connect-dev

Jr Usage costs
$11.84
$9.36
$4.78
$2.73
$1.52
$0.49
$0.22
$0.05

$0.03

Allocation costs
$29.57
$5.45

$8.68

$8.68

$8.68

$8.68

$8.68

Overprovisioning costs

$15.52

$§2.76

$6.76

$8.01

$8.53

$8.53

Cross-AZ traffic

$2.87
$0.38

$1.30

$0.08

$8.94

$0.02

Rows per page: 20

Q, Search

1-90f9

$93.52

$0.00

Internet egress traffic

38

eBPF-based traces (spans)

Latency & Errors heatmap, requests per second

e
0.07/s 629/s 1258/s

errors
>10s
10s
5s
2.5s
1s

[T R e e CLLEEEE PP fa}
0.25s
100ms
50ms
25ms
10ms

Sms
D LTI LT T T

Apr12 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 13:00
Client Status Duration Name Details
= app @ 0K 27.04ms query PREPARE AS select title, body from articles where id = any ($1)
= app @ 0K 53.30ms query insert into articles (created, title, body) values ($1, $2, $3)
= app @ 0K 38.06ms query select id from articles where created < $1 order by created desc limit $2
= app @ OK 26.22ms query PREPARE AS select id from articles where created < $1 order by created desc limit $2

Traces are extremely useful for identifying the particular requests within an

anomaly

They also provide a more granular distribution of requests by latency and

status

coroot :~# EEE

”
+ The OpenTelemetry SDKs generate a TRACE_ID for each
request and propagate it to other services \

e B P F — * When using eBPF, TRACE_IDs are not available, limiting
us to capturing individual spans (requests) rather than

complete traces

« There's a tool that claims to generate TRACE _IDs by
intercepting and modifying requests, but | think it's not
a good idea

tracing
limitations

« Coroot supports both traditional OpenTelemetry
integration and eBPF-based tracing methods

40

eBPF-based
continuous CPU
profiling

 Allows to explain any anomaly in CPU

usage precise to the particular line of
code

- Doesn’t require any code changes

« Gathers per-process call stacks and
aggregates them by containers

» Resolution by default is 60 seconds, so
you can compare profiles within and
anomaly with previous periods

eBPF-based CPU profiling

CPU usage by instance, cores 0 Q x
200m
150m
100m
50m
om
May 02 12:50 12:55 13:00 13:.05 13:10 13:15 13:20 13:25 13:30 13:35 13:40

0l coredns-787d4945fb-cnjgz [coredns-787d4945fb-gj9vw

‘ Q, Search

eBPF-based CPU profiling (comparison mode)

i Q X

baseline comparison

CPU usage by instance, cores

200m
150m
100m

50m

om
May 02 12:50 12:55 13:00 13:05 13:10 13:15 13:20 13:25 13:30 13:35 13:40

0§ coredns-787d4945fb-cnjgz | coredns-787d4945fb-gj9vw

‘ Q, Search

How Coroot works

— tr L ClickHouse
Metries, o9S, L.ogs, Troaces, Profiles _
Coroot-noo(e_-oggen't TP&CCS, Propi[e_s .

Coroot

OpenTelemet
[P A Logs, Troces (oTLP)

Metrics

Prometheus

- coroot-node-agent: gathers metrics, logs, traces, and profiles. Installed on
every node in the cluster (k8s, docker, VM, bare-metal)

« Prometheus for storing metrics

« ClickHouse for storing logs, traces, and profiles

« Coroot: Ul, alerts, predefined inspections

* You can use Coroot as an OpenTelemetry backend for logs and traces

coroot ~# g

Conclusion

eBPF is awesome!

+ It enables gathering almost any telemetry data
you need without requiring code changes.

« The performance impact on your apps is
negligible.

« Want to gain system visibility in minutes? Install
Coroot (Open Source, Apache 2.0).

« https://github.com/coroot/coroot

45

Thank you, Let’s connect!

PIROLEY
(KKK

ittt A A
e

DevOpsDays
Chicago

https://devopsdays.org/

https://www.linkedin.com/in/peterzaitsev
https://twitter.com/PeterZaitsev

http://www.peterzaitsev.com

coroot ~#

46

https://www.linkedin.com/in/peterzaitsev/
https://twitter.com/PeterZaitsev
http://www.peterzaitsev.com/
https://osoday.com/

	Slide 1: Zero-instrumentation observability based on eBPF
	Slide 2
	Slide 3: My Perspective
	Slide 4: What is Observability ?
	Slide 5: What Is Observability
	Slide 6: Evolution of the Applications
	Slide 7: Why Observability ?
	Slide 8: First Three Usually Come Together
	Slide 9: 4 Pillars of Observability
	Slide 10: What is the Most Useful?
	Slide 11: Metrics
	Slide 12: Logs
	Slide 13: Distributed Tracing
	Slide 14: Distributed Tracing Example
	Slide 15: Profiling
	Slide 16: Instrumentation
	Slide 17: Types of Instrumentation
	Slide 18: When and Where should we Instrument?
	Slide 19: Instrumentation Challenge
	Slide 20: Making a system observable
	Slide 21: Collecting telemetry data
	Slide 22: Collecting telemetry data
	Slide 23: A quick intro into eBPF
	Slide 24: eBPF Illustrated
	Slide 25: How to use eBPF
	Slide 26: eBPF Awesome Command Line Tools
	Slide 27: Example: CPU Runqueue Latency
	Slide 28: eBPF Applications
	Slide 29: Coroot-node-agent (Apache 2.0 license)
	Slide 30: How the agent leverages eBPF
	Slide 31: How the agent leverages eBPF
	Slide 32: How the agent leverages eBPF
	Slide 33: SSL
	Slide 34: eBPF: performance impact
	Slide 35: eBPF-based metrics
	Slide 36: eBPF-based metrics
	Slide 37: eBPF Based DNS Profiling
	Slide 38: eBPF Based Network Cost Monitoring
	Slide 39: eBPF-based traces (spans)
	Slide 40: eBPF-based tracing limitations
	Slide 41: eBPF-based continuous CPU profiling
	Slide 42: eBPF-based CPU profiling
	Slide 43: eBPF-based CPU profiling (comparison mode)
	Slide 44: How Coroot works
	Slide 45: Conclusion
	Slide 46: Thank you, Let’s connect!

