
Peter Souter
Technical Account Manager | Puppet

@petersouter

2

Who
am I?

@petersouter

Technical Account
Manager

6 years using Puppet

2 years @ Puppet Inc

Work with customers on their
holistic Puppet Program

Help customers get the best
use of Puppet

Evangelise and work with the
community

petems
IRC/Slack/GitHub

3

I’m super excited to be here
My first ever talk slot at a DevOpsDays!

4

I’m slowly hitting all my Tech Talk
Ambitions

● Speak at FOSDEM - Done! 2016
● Speak at Config Management Camp - Done! 2016

● Speak at PuppetConf - Done! 2016
● Speak at a DevOpsDays - Done! 2017

● Speak at LISA - WIP
● Speak at a VelocityConf - WIP

5

So what are we here to talk about?
We’re in the Security Slot right? So let's talk security!

6

Every time someone uses this picture,
Pete Cheslock gets his wings!

https://twitter.com/petecheslock/status/595617204273618944

https://twitter.com/petecheslock/status/595617204273618944
https://twitter.com/petecheslock/status/595617204273618944

7

● What are the risks of leaking
secrets in your infrastructure?

● How can prevent leaks from
your Infrastructure as code?

● What parts of the DevOps
toolchain can help you?

● How do you detect leaks and
what can you do when they
happen?

What are we going to cover?

https://flic.kr/p/7LcF2W

https://flic.kr/p/7LcF2W
https://flic.kr/p/7LcF2W

8

So what are secrets in IaC?
It’s always good to define something if you’re discussing it

9

What are secrets in IT?

Radioactive
Consequences are
dire from a leak

Examples
Passwords, API
Keys, SSH Keys,
SSL Certs...

Small
A few kb at most

Required
The infrastructure
won't work without
them!

https://flic.kr/p/dHrwpb

https://flic.kr/p/dHrwpb
https://flic.kr/p/dHrwpb

The Risks
How bad could it be?

10

11

We’ve all seen things like this...

12

● Ransom

● Data theft

● Loss of Customers

● Legal and PR fires

Worst Case Scenario: Organisational Catastrophe

Preventing Leaks
Plugging the holes

13

First things first: Remove existing plaintext secrets

14

Clean up the current codebase and keep it clean

Trufflehog

15https://github.com/dxa4481/truffleHog

https://github.com/dxa4481/truffleHog
https://github.com/dxa4481/truffleHog

--

gittyleaks' Bot Detective at work ...

--

file: site/profiles/templates/rhn/RHN-ORG-TRUSTED-SSL-CERT.erb

what: Key

value: (2048

match:

 Public-Key: (2048 bit)

num_of_revisions: 59

Gittyleaks

16https://github.com/kootenpv/gittyleaks

https://github.com/kootenpv/gittyleaks
https://github.com/kootenpv/gittyleaks

GitRob

17https://github.com/michenriksen/gitrob

https://github.com/michenriksen/gitrob
https://github.com/michenriksen/gitrob

Manual Grepping

18

$ git grep -i -e

"(api\\|key\\|username\\|user\\|pw\\|password\\|pass\\|email\\|mail

)" -- `git ls-files | grep -v .html` | cat

Build pipelines are super useful for
preventing the re-introduction of leaks

19

Danger.systems

20https://github.com/Netflix/Scumblr

https://github.com/Netflix/Scumblr
https://github.com/Netflix/Scumblr

Danger.systems

21https://github.com/getsentry/sentry/blob/ac8fe045fb161e67140d5d2959381b74f0738dc8/Dangerfile

set the patterns to watch and warn about if they need security review

@S_SECURITY_FILE_PATTERN ||= /Dangerfile|(auth|login|permission|email|twofactor|sudo).*\.py/

...

warn("Changes require @getsentry/security sign-off")

message = "### Security concerns found\n\n"

securityMatches.to_set.each do |m|

 message << "- #{m}\n"

end

markdown(message)

https://github.com/getsentry/sentry/blob/ac8fe045fb161e67140d5d2959381b74f0738dc8/Dangerfile
https://github.com/getsentry/sentry/blob/ac8fe045fb161e67140d5d2959381b74f0738dc8/Dangerfile

Then figure out how to protect those secrets

22

Encryption, architectural changes or moving to a secret
service

Most Infrastructure as Code tools have a
separate data layer

23

Puppet uses Hiera as a data layer

24

gitlab::gitlab_rails_config:

 ldap_enabled: true

 ldap_servers:

 acmeldapserver:

 label: 'acme LDAP'

 host: 'ldap.acme.net'

 port: 389

 uid: 'uid'

 method: 'plain'

 bind_dn: 'UID=puppetmaster,OU=System,OU=Accounts,DC=acme,DC=net'

 password: 'puppetmaster'

 active_directory: false

 allow_username_or_email_login: false

 block_auto_created_users: false

 base: 'OU=People,OU=Accounts,DC=acme,DC=net'

 user_filter: '(|(description=Systems Administrator)(description=Systems Developer)(description=Manager))'

Bad!
Plaintext :(

25

26

Good!
Encrypted :D

27

28

29https://github.com/TomPoulton/hiera-eyaml

hiera-eyaml

https://github.com/TomPoulton/hiera-eyaml
https://github.com/TomPoulton/hiera-eyaml

30

Theoretically, you should be
able to release the of the
code you write publically

without any sort of security
issues

31

This is actually a tenet of
12 Factor Apps...

Apps sometimes store config as constants in the code. This is a violation of
twelve-factor, which requires strict separation of config from code. Config varies
substantially across deploys, code does not.

A litmus test for whether an app has all config correctly factored out of the
code is whether the codebase could be made open source at any moment,
without compromising any credentials.

Note that this definition of “config” does not include internal application config, such
as config/routes.rb in Rails, or how code modules are connected in Spring. This
type of config does not vary between deploys, and so is best done in the code.

http://12factor.net/config

http://12factor.net/config
http://12factor.net/config

Example: GDS
Government Digital Service, UK

32

33

Meeting the Digital Service Standard

To meet point 8 (understand security and privacy issues) you must:

● Make all new source code open and reusable

● Publish code under an appropriate licence

● Explain your reasoning for any code you haven’t made open

You’ll have to explain how you did this at your service assessments.

https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable

https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable

34

Meeting the Digital Service Standard
When GOV.UK was first set up we were unable to publish our Puppet
repository because our code and secrets were tied together. This goes
against patterns like the 12-factor app which “requires strict separation
of config from code”

This wasn’t true for our Puppet repository, but we gradually moved our
credentials into a separate repository (rotating them as we did so).

“A litmus test for whether an app has all config correctly factored out of the
code is whether the codebase could be made open source at any moment,
without compromising any credentials.”

35

$ strings modules/**/*.pp | tr ' '

'\n' | sort -n | uniq | view -

Check code for unique strings that look secret-y

Note: Requires zsh for the strings function!

It’s not just the code!
Git commits can contain sensitive data

36

37

$ git commit -a -m "Changed the

password to password1"

38

$ while read line; do echo $line;

git --no-pager log -p -S $line; done

< puppet_search

Manually searching through git commits for
sensitive information...

39

Opening GOV.UK’s Puppet Repository
https://gdstechnology.blog.gov.uk/2016/01/19/opening
-gov-uks-puppet-repository/

Git Repo https://github.com/alphagov/govuk-puppet

Want to know more?

https://gdstechnology.blog.gov.uk/2016/01/19/opening-gov-uks-puppet-repository/
https://gdstechnology.blog.gov.uk/2016/01/19/opening-gov-uks-puppet-repository/
https://gdstechnology.blog.gov.uk/2016/01/19/opening-gov-uks-puppet-repository/
https://github.com/alphagov/govuk-puppet

The Toolchain
What existing tooling can be used to help?

40

Command Line Encryption

41

● Can be operationally difficult, not always
designed with config management in mind

● Key rotation is still a PITA
● Big trend right now for cool companies to write

encryption and secret handling apps in Go:
YMMV on this...

Examples: GPG, mozzila/sops, Shopify/ejson

Secret Servers: Why?

42

● Dynamic secrets
● ACL (Access control policies)
● Leasing and renewal
● Revocation
● Encryption
● Auditing
● Supportability

Examples: Vault, Conjur, Keywhiz, Confidant, CyberArk

Cloud Native Secret Services

43

● AWS: KMS
● GCE: KMS
● Azure: Key Vault
● Openstack: Barbican

44

● Transcrypt
Git-Crypt
Blackbox

● High operational overhead

● Encrypting files, not data

● Good Summary: Turtles All
The Way Down: Storing
Secrets in the Cloud and in
the Data Center

VCS based encryption

http://danielsomerfield.github.io/turtles

https://www.youtube.com/watch?v=OUSvv2maMYI

http://danielsomerfield.github.io/turtles/
http://danielsomerfield.github.io/turtles/
https://www.youtube.com/watch?v=OUSvv2maMYI
https://www.youtube.com/watch?v=OUSvv2maMYI

Detecting leaks and reacting
How to keep your head when everyone’s losing theirs

45

Generic procedure upon the detection of leaked
credentials

46

● Roll new keys and reset passwords
● Monitor systems for intrusive behaviour
● Recreate machines from base
● Keep track of actions for post-mortem

Scumblr

47https://github.com/Netflix/Scumblr

https://github.com/Netflix/Scumblr
https://github.com/Netflix/Scumblr

Gitleaks.com

48

Gitleaks.com

49

Gone?

Unfortunately, there’s no silver bullet to
detect leaked secrets

50

A lot of it is about monitoring and
metrics, gating and reviews

51

Outliers and anomalies
are what to look for

52

53

It’s largely a people and process problem

Who here has a
HIDS system operating?

54

Credential gets leaked →
Unusual activity logged and alerted →
Blue team goes out and fixes things

55

Making sure security is part of your
workflow, rather than an afterthought
“Shift security left”

56

57

“security must “shift left,” earlier into design and coding and into the
automated test cycles, instead of waiting until the system is designed and
built and then trying to fit some security checks just before release”

- DevOpsSec: Delivering Secure Software Through Continuous Delivery, Jim Bird

Shifting left

58

How do we pro-actively guard against
secrets being leaked?

● Game days and internal evil attempt teams
● Continuous security integration (CI tests/code-review)
● Dedicated security stories for sprints

○ Evil users or (mis)use cases
○ https://www.owasp.org/index.php/Application_Threat_Modeling

● Embedded security team members
● Pentests - internal and external

https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling

59

Game Day example: Agent spoofing
Let's say someone gets access to an agent machine.

What’s the worst they can do?
What information can they fetch?

What passwords do they have locally?
What can they detect remotely?

60

Game Day example: Laptop theft
Give someone a standard workstation

Are your workstation FDE?
What credentials are on the average machine?

How much damage can they do?
How long does it take to be detected?

Summary
What have we learnt?

61

Leaking things is bad
Consequences are dire

62

Start by removing plaintext secrets
Make sure the code is clean enough to be released

63

Make sure the data is kept secret
With tooling that fits with your workflows and architecture

64

Ensure that those secrets are kept secret
People, processes and automated testing

65

Know what to do when things go wrong
Runbooks, workflows, game day trainings and such

66

Move security left
Make it a part of your process, rather than an afterthought

67

● Behind Closed Doors - Managing Passwords in a Dangerous World - Noah Kantrowitz
https://coderanger.net/talks/secrets/

● Turtles All The Way Down Storing Secrets in the Cloud and in the Data Center - Daniel
Somerfield
http://danielsomerfield.github.io/turtles

● Secrets and LIE-abilities: The State of Modern Secret Management - Jeff Nickoloff
https://medium.com/on-docker/secrets-and-lie-abilities-the-state-of-modern-secret-manag
ement-2017-c82ec9136a3d

● Detecting and Mitigating Secret-Key Leaks in Source Code Repositories -
https://people.eecs.berkeley.edu/~rohanpadhye/files/key_leaks-msr15.pdf

● Infrastructure Secret Management Software Overview
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd

68

Want to know more?

https://coderanger.net/talks/secrets/
https://coderanger.net/talks/secrets/
https://coderanger.net/talks/secrets/
http://danielsomerfield.github.io/turtles
http://danielsomerfield.github.io/turtles
https://medium.com/on-docker/secrets-and-lie-abilities-the-state-of-modern-secret-management-2017-c82ec9136a3d
https://medium.com/on-docker/secrets-and-lie-abilities-the-state-of-modern-secret-management-2017-c82ec9136a3d
https://medium.com/on-docker/secrets-and-lie-abilities-the-state-of-modern-secret-management-2017-c82ec9136a3d
https://people.eecs.berkeley.edu/~rohanpadhye/files/key_leaks-msr15.pdf
https://people.eecs.berkeley.edu/~rohanpadhye/files/key_leaks-msr15.pdf
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd
https://gist.github.com/maxvt/bb49a6c7243163b8120625fc8ae3f3cd

Q&A

