Terminal Velocity

Doing DevOps Right By Removing CLIs From Production Environments

Matthew Simons
@thatsimonsguy
thatsimonsguy@gmail.com

Removing|CLIs

Removing

From

Production Environments

things that let you break stuff easily

from

places where breaking things is really bad

Amazon S3 -
During issue
remediation

Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region

We'd like to give you some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on the morning of February 28th. The Amazon
Simple Storage Service (S3) team was debugging an issue causing the S3 billing system to progress more slowly than expected. At 9:37AM PST, an authorized S3 team member using an
established playbook ited a 1d which was intended to remove a small number of servers for one of the S3 subsystems that is used by the S3 billing process. Unfortunately, one
of the inputs to the command was entered incorrectly and a larger set of servers was removed than intended. The servers that were inadvertently removed supported two other S3
subsystems. One of these subsystems, the index subsystem, manages the metadata and location information of all S3 objects in the region. This subsystem is necessary to serve all GET,

LIST, PUT, and DELETE requests. The second subsystem, the placement subsystem, manages allocation of new storage and requires the index subsystem to be functioning properly to
correctly operate. The placement subsystem is used during PUT requests to allocate storage for new objects. Removing a significant portion of the capacity caused each of these systems
to require a full restart. While these subsystems were being restarted, S3 was unable to service requests. Other AWS services in the US-EAST-1 Region that rely on S3 for storage, including
the S3 console, Amazon Elastic Compute Cloud (EC2) new instance launches, Amazon Elastic Block Store (EBS) volumes (when data was needed from a S3 snapshot), and AWS Lambda
were also impacted while the S3 APIs were unavailable.

S3 subsystems are designed to support the removal or failure of significant capacity with little or no customer impact. We build our systems with the assumption that things will occasionally
fail, and we rely on the ability to remove and replace capacity as one of our core operational processes. While this is an operation that we have relied on to maintain our systems since the
launch of S3, we have not completely restarted the index subsystem or the placement subsystem in our larger regions for many years. S3 has experienced massive growth over the last
several years and the process of restarting these services and running the necessary safety checks to validate the integrity of the metadata took longer than expected. The index subsystem
was the first of the two affected subsystems that needed to be restarted. By 12:26PM PST, the index subsystem had activated enough capacity to begin servicing S3 GET, LIST, and
DELETE requests. By 1:18PM PST, the index subsystem was fully recovered and GET, LIST, and DELETE APIs were functioning normally. The S3 PUT API also required the placement
subsystem. The placement subsystem began recovery when the index subsystem was functional and finished recovery at 1:54PM PST. At this point, S3 was operating normally. Other AWS
services that were impacted by this event began recovering. Some of these services had accumulated a backlog of work during the S3 disruption and required additional time to fully

recover.

We are making several changes as a result of this operational event. While removal of capacity is a key operational practice, in this instance, the tool used allowed too much capacity to be
removed too quickly. We have modified this tool to remove capacity more slowly and added safeguards to prevent capacity from being removed when it will take any subsystem below its
minimum required capacity level. This will prevent an incorrect input from triggering a similar event in the future. We are also auditing our other operational tools to ensure we have similar
safety checks. We will also make changes to improve the recovery time of key S3 subsystems. We employ multiple techniques to allow our services to recover from any failure quickly. One
of the most important involves breaking services into small partitions which we call cells. By factoring services into cells, engineering teams can assess and thoroughly test recovery
processes of even the largest service or subsystem. As S3 has scaled, the team has done considerable work to refactor parts of the service into smaller cells to reduce blast radius and
improve recovery. During this event, the recovery time of the index subsystem still took longer than we expected. The S3 team had planned further partitioning of the index subsystem later
this year. We are reprioritizing that work to begin immediately.

From the beginning of this event until 11:37AM PST, we were unable to update the individual services’ status on the AWS Service Health Dashboard (SHD) because of a dependency the
SHD administration console has on Amazon S3. Instead, we used the AWS Twitter feed (RAWSCloud) and SHD banner text to communicate status until we were able to update the
individual services’ status on the SHD. We understand that the SHD provides important visibility to our customers during operational events and we have changed the SHD administration
console to run across multiple AWS regions.

Finally, we want to apologize for the impact this event caused for our customers. While we are proud of our long track record of availability with Amazon S3, we know how critical this
service is to our customers, their applications and end users, and their businesses. We will do everything we can to learn from this event and use it to improve our availability even further.

Azure - During deployment

Overview of the Storage Incident

We are continuously looking for ways to improve performance of all aspects of our platform. In this case, we
developed a software change to improve Azure Storage performance by reducing CPU footprint of the Azure
Storage Table Front-Ends. We deployed the software change using the described flighting approach with the new
code disabled by default using a configuration switch. We subsequently enabled the code for Azure Table storage
Front-Ends using the configuration switch within the Test and Pre-Production environments. After successfully
passing health checks, we enabled the change for a subset of the production environment and tested for several
weeks. While testing, the fix showed notable performance improvement and resolved some known customer issues
with Azure Table storage performance. Given the improvements, the decision to deploy the fix broadly in the

production environment was made. During this deployment,_
flighting deployment policy of incrementally deploying changes across small slices was not followed. The engineer

fixing the Azure Table storage performance issue believed that because the change had already been flighted on a
portion of the production infrastructure for several weeks, enabling this across the infrastructure was low risk.
Unfortunately, the configuration tooling did not have adequate enforcement of this policy of incrementally
deploying the change across the infrastructure. 2. Although validation in test and pre-production had been done
against Azure Table storage Front-Ends, the_or Azure Blob storage
Front-Ends. Enabling this change on the Azure Blob storage Front-Ends exposed a bug which resulted in some Azure
Blob storage Front-Ends entering an infinite loop and unable to service requests. Automated monitoring alerts
notified our engineering team within minutes of the incident. We reverted the change globally within 30 minutes of
the start of the issue which protected many Azure Blob storage Front-Ends from experiencing the issue. The Azure
Blob storage Front-Ends which already entered the infinite loop were unable to accept any configuration changes
due to the infinite loop. These required a restart after reverting the configuration change, extending the time to

recover.

Gitlabs - During issue remediation

+23:30 UTC: one of the engineers thinks that perhaps pg_basebackup created some filesin the PostgreSQL data
directory of the secondary during the previous attempts to run it. While normally pg_basebackup printsan error
when this is the case, the engineer in question wasn't too sure what was going on. It would later be revealed by
another engineer (who wasn't around at the time) that this is normal behaviour: pg_basebackup will wait for the
primary to start sending over replication data and it will sit and wait silently until that time. Unfortunately this was

not clearly documented in our engineering runbooks nor in the official pg_basebackup document.

Trying to restore the replication process, an engineer proceeds to wipe the PostgreSQL database directory, errantly
thinking they were doing so on the secondary. Unfortunately this process was executed on the primary instead.
The engineer terminated the process a second or two after noticing their mistake, but at this point around 300 GB

of data had already been removed.

Hoping they could restore the database the engineers involved went to look for the database backups, and asked

for help on Slack. Unfortunately the process of both finding and using backups failed completely.

Level 3 Root Cause Analysis:

Rerale Aress Huran Erfor Obelrmencs Level 3 - Configuration during provisioning

Repair Action: Human Error
Repair Summary:
Reason for Outage (RFO) Summary:

On October 4, 2016 at 14:06 GMT, calls were not completing throughout multiple markets in the United States.
Level 3 Communicationsé call center phone number, 1-877-4LEVEL3, was also impacted during this timeframe,
preventing customers from contacting the Technical Service Center via that phone number. The issue was reported
to the Voice Network Operations Center (NOC) for investigation. Tier III Support was engaged for assistance
isolating the root cause. It was determined that calls were not completing due to a configuration limiting call flows
across multiple Level 3 voice switches. At 15:31 GMT, a configuration adjustment was made to correct the issue,
and Inbound and outbound call flows immediately restored for all customers. Investigations revealed that/ar

This was the configuration change that led to the outage. The entry did not spcify a telephone number to limit the
configuration change to, resulting in non-subscriber country code '1' calls to be released while the entry remained
present. The configuration adjustments deleted this entry to resolve the outage.

Corrective Actions:

Level 3 Communications knows how important these services are to customers. As an organization, this incident is
being evaluated at the highest levels to prevent reoccurrence. Process has been put in place to alert this specific
Provisioning team of how this incident could have been avoided. Access restrictions have been made to mitigate
the possibility of large-scale configuration changes, and a future process for these types of provisioning activities
will be evaluated to involve additional technical support. System tools are being investigated to place additional
guardrails against this type of trouble.

You run arbitrary code in production

Rapid Response: A Cautionary Tale

Single Points of Failure in Process

////u

fll |

1
1
1
1

APWNRPOCOONOOTUAWNRE

[QT QT W T Yy
oo,

[convoluted Runbook

Step 1:
Do a thing

Step 2:
Do exactly this thing that is explained poorly

Step 3:
If you screwed up step 2, do this thing
Other wise, go to step 5

Step 4:
Repeat step 2

Step 5:

If you messed up step 2, do a thing

If you didn't mess up step 2, do a different thing
If you're not sure, just do this other thing

Step 6:
Complain about the quality of this documentation

Step 7:
Pray that all the things you did were right

Step 8:
Fail to update runbook

http://www.youtube.com/watch?v=gqRdT8m1Suo

Single Points of Failure

Single
Point
of

Failure

You do not scale

My SOL

\—ﬁ

\—ﬁ

e
v
s

e
v
s

e
mw\:,
751

Demo
ws

P® "~ p@® -
T® " pa -
m.w:v _Nm.:v

73]

BORE R I

q-l = |
o » 9 = >
! o _
T B =
: .m m.uﬁ\—ﬁ
gy 8 B o | .
: o
_.E & 3 - Q
a9 g | -
n 0 %

m.u.) ﬂm-. = 9

Kelsey Hightower @
ﬁ @kelseyhightower h
Ops lock-in: When your organization cannot

innovate faster than your ops team will allow
or willing to support.

% ©29020008
1:47 PM - 4 Apr 2017

Q 20 11 190) 282

as code

g

11,\6
pLl as code

Compliant
Immutable
Auditable
Repeatable
Scalable

Makes you feel like

a badass dumbass

. NN\ N

Code Is safe(r)

Common Components

Source control

Review

Testing

Sanity checking at runtime

B~ =

Output

Code

Run it!

Production
Environment

Fetch Source

Checkin

Dry Run

a)

Github
(Source Control)

_ /

t
Webhooks
PR Updates
4)

\

Rosie
(Compliance Control)

/

Code Github
— (Source Control)

- /

Stack Update
Create/Update

Stack Definitions

Release
Wement e

-

amazon

webservices

Cloudformation Deployer
(Release Automation)

~

/

\
Resource ' e N\
Signals
Production
Environment
\ /

Summary

REMOVE THINGS THAT LET YOU BREAK STUFF EASTLY FROM PLACES WHERE
BREAKING THINGS 15 BAD.

Operations as code
Crisis response as

code Everything as code

DoON'T BE A SINGLE POINT OF FAILURE

Do 1t for you!

Matthew Simons @ v\/orkiva

